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Neutron scattering from strained polymer networks 

M Warner? and S F Edwards 
Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge, CB3 OHE, 
UK 

Received 1 March 1978 

Abstract. The scattering function S ( k )  for neutrons off a randomly cross-linked phantom 
network is calculated. Adopting the results of Deam and Edwards in which the mean 
position of the chain deforms affinely and fluctuations about this mean are random (i.e. 
non-affine) gives very different results from Benoit and co-workers who assume affine 
deformation of the chain shape. Some of the results obtained are similar to those of 
Pearson who calculates S ( k )  using Flory’s theory of non-affine fluctuations. However, the 
predictions for networks more densely cross-linked are different from those of Flory’s 
theory. 

1. Introduction 

It has been shown that when a network of phantom chains is deformed there is a 
non-affine component in the deformation of an individual chain (Deam and Edwards 
1976, Flory 1976, and James 1947). Deams and Edwards argue that a chain in a 
rubber is constrained to have a mean position in the network because of the localising 
effect of cross-links (and further in cases of real chains because of the topological 
barriers to movement presented by the matrix of other chains). This mean position or 
trajectory will transform in an affine way, i + A i  where A is the deformation tensor 
given by 

However, in the strained state the chains will still fluctuate away from this mean P (see 
figure 1). The precise freedom of the phantom chain to fluctuate will be determined 
by the degree of cross-linking. 

Figure 1. Fluctuation of chain about the mean. 
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Deam and Edwards chose an harmonic potential to represent this constraint 
against fluctuations away from the mean trajectory. A calculation of the free energy 
of the network was then performed using this trial form for the distribution for the 
chains. This resulting free energy was then minimised with respect to the choice of 
trial function. It turned out in their calculation that the harmonic potential governing 
the fluctuations Ar away from the mean depended on the inverse distance between 
cross-links and not at all on the strain A. This clearly gives a non-affine contribution to 
the chain position since 

r ( s )  = A i  + Ar 

and only the Ar term is affine. 
Thus a calculation of the scattering assuming that the chains deform affinely can 

only be a first approximation. This has been noticed by Pearson (1977) who extended 
the work of Benoit et a1 (1975) to allow for non-affine fluctuations. Pearson used the 
network theory of Flory (1976) which is for junction points equally spaced on chains. 

We shall here adopt the model of randomly cross-linked chains forming a network. 
The chains are phantom, that is they can pass through each other so that the only 
localising effect is from the cross-links. A real network will most nearly approach this 
picture if it is cross-linked in as dilute a solution as possible in order to minimise 
entanglement and other effects most indicative of non-phantom behaviour. The 
cross-linking junctions in our network will be only tetrafunctional. 

Finally a comment on how one can observe the molecular configurations discussed 
in this paper. When polymer chains are labelled (deuterated) and then formed into 
part of a mostly unlabelled network they can be observed by neutrons which are 
sensitive to the contrast thus created. (See Benoit et a1 (1973) for an account of 
determining the dimensions of single chains when in a dense solution of like chains.) 
The single chains can then be followed as the sample is stretched and the shape as a 
function of strain can be determined. 

2. Calculation of the scattering function 

The scattering function S ( k )  is 

where k is the scattering vector and ri and ri are the positions of the ith and jth 
monomers respectively. For the purposes of calculation we picture the network as 
consisting of one long chain of N monomers cross-linked to itself N ,  times. 

We shall evaluate the configurational average ( ) by adopting the philosophy of 
Deam and Edwards (1976). There it is shown that for a system with permanent 
constraints care must be taken in evaluating partition integrals and the averages of 
physical quantities. A good example is the free energy where one must first evaluate 
the free energy of a system with a given topology, ‘m’ say, (corresponding in our case 
to a given set of cross-links) and then average this over topologies. That is 
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where pm is the probability of a topology ' m ' :  

e-FmB 

E, P m  = 

Z, j dil, e-'" In dil, e-"") 
F =  

Z, 5 do, e-'" 

(where j dil, denotes the integral over systems restricted to have the topology ' m ' ) .  
This is a radically different result from the usual evaluation of F which is effectively an 
average of Z, = 

F = [ dil, e-pH. 
m J  

(3) 

pm is of course purely a property of the system at the time of fabrication and does not 
alter with strain, whereas F, will. This is shown by Deam and Edwards to give rise to 
a modulus. That is, the averaging of the logarithm in (2') gives us a solid rather than 
the melt implied by (3). 

Similarly here it is the physical quantity S, (k ) ,  the scattering function due to the 
system with the topology 'm', which must be averaged. We shall get around the 
awkward problem of the denominator in the average by introducing an analogous free 
energy and performing its average by the same replica method that Deam and 
Edwards employed for the normal free energy. Hence 

1 x i , j  do, e-"" exp[ik. (ri - r j ) ]  
s m ( k ) = ?  j- dil, e-*'H 

where the tilde on the integral indicates that the phase integral is over the strained 
volume. Let us put 

Then (4) can be rewritten as 

where F ( p ,  k) can be thought of as a free energy resulting from a Hamiltonian with 
sources p4k in it. This is akin to the propagator formulation in quantum field theory 
where source fields are put into the Lagrangian and where the propagator can be 
written 

and where 
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Hence on averaging S ( k )  becomes 

S ( k ) = - l  
a 

ap p = o  Xm d a m  e-BH 
Em j d a m  e-*"F(p, k )  

(6 ) 
a ---- I  - ln(x I d a m  exp(-PH-nF(p, k ) ) )  

a p  p = o a n  " = o  m 

(using a similar trick to get rid of the second denominator). We then rewrite the F 
term: 

exP(-nwh k ) )  

= (1- do,  exp(-PH - P W ) ~  

= J fi dR',"'exp(-P f ~ ' " ' - p  f 4 f ) )  - u = l  a = l  a = l  
(7) 

by converting to an n-fold multiple integral where each integrand now has a label a. 
Hence the problem remains of evaluating 

dfl',"'exp(-P'H'o'- f PH'"'-p d'.))] (8) 
a = l  a 

where effectively we have one unstrained system (a = 0) and n strained systems 
(a = 1 , .  , . , n )  which Deam and Edwards (1976) call replication. 

The constraint in this case ('m') is 

Where N ,  points have r u ( s ) = r u ( s ' )  expressed by the 6 function. (In this paper we 
interchange freely between the discrete (ri) and continuous representations for a 
chain.) Pictorially one has the situation shown in figure 2, and the phase integral 5 Sr, 
is over configurations where this is fixed. 

Figure 2. 

In the argument of the logarithm the propagator used for averaging e-'@' is 

This is what Deam and Edwards evaluated when finding the free energy. The S 
constraint is modelled by an harmonic well acting against fluctuations away from the 
chain's affinely-deformed mean path. It is found that the variation of this potential 
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can give a minimum for the free energy on straining. Hence this value for the 
potential will give an optimised model form for the propagator G:  

where the well parameter w is given by 

w = 6NJ lL  

We have taken a new coordinate system for convenience. X"' is related to the old 
{qa)} by a 'rotation' T: 

r(a) = T " ~ X ' ~ '  

(I\Tll= 1 and hence any Jacobian will be 1). The new coordinates have the following 
characteristics: 

( l o a )  (0)  - (0)  X(i )  - (r(i) + A i  X=i r;))/Ai 

is a free 'centre of mass-like coordinate' corresponding to a chain X'O) in a volume 
V ni Ai  (i here is a Cartesian coordinate x ,  y, 2). X'"' is a relative coordinate 

1 "  x("' = - ( A I .n 1/2r(o) I - n'/2 c I?)) 

I Ai a = l  

and there are n - 1 rotated coordinates (p = 1, . . . , n - 1): 

1 "  
O O C )  

xi (8) - -7 1 r?' exp(27ipaln). 
a = l  

2 1 / 2  A i  is (1 + nA ) which retains the orthonormality of the transformation. This trans- 
formation is given by Deam and Edwards but their T is the transpose of ours and their 
X")  our X'"', their 

We evaluate the argument of the logarithm in (8) by expanding the exponential for 
small p :  

our X'l) and so on up to X'"). 

SX'O'j fi SX'"exp( - f ds$'p)2(s)- 5 & o ~ ~ X ' ~ ) ~  
p = l  p =O p = 1  

x (1 - p  c #"~'81)+o(P2)). 
U 

The function 4(=) transforms (using the relations (10)) to 

The first term in (1 1) is simply Z(n) ,  the partition function for the replicated system, 
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In the second term we do the integrations one by one to give 

n-1 n SX‘”+exp(-ki- , n - 1  - - [ l -e~p(-1~wi /3~p-q\ ) ] ) .  1 
@ = 1  n 20; 

Hence we get in (8) 

(having taken out a factor of Z ( n )  which also has the effect of normalising the second 
term correctly; it is a p-independent term). The (a/dn)l.=, has the effect of only acting 
on the n factor. This is because the n appearing in the A i  give harmless contributions 
on differentiation. Thus a In(.  . . )/dnI.=o has the result (also doing (d/dp)lp=o) 

1 2 2 2  1 
S(k) = 2 2 exp( -ki  A ; I  Ip - 41/6 - k?  (1 - A  ?)-[1 - exp(-;l2wi/p -S I ) ] ) .  (13) 

P.4 2wi 

Equation (13) is the principal result of this paper. The first term would be the only 
one present if the chain shape deformed affinely (Benoit et a1 1975). The second term 
represents the non-affine fluctuations that the chain executes. It depends on the well 
parameter w, that is, the extent of the additional fluctuations depends upon how 
constrained the chain is by cross-links. 

If we let w(=6Nx/IL)  get very small (i.e. we have a weakly cross-linked network) 
then we get: 

S(k)=?C 1 exp[ -6(121p k ?  -ql+131p-q122(A? - l))], 
P.4 

Further noting that L = N and that for tetrafunctional cross-links N ,  = 2Nx(N, is the 
number of chain segments) we can re-arrange the result to the form 

(L, is the length of the average segment). This result can be considered as being for a 
single labelled chain in which case N becomes N,.  The result (14) is then precisely the 
result Pearson (1977) obtained and we refer the reader to his paper for the form of the 
scattering law this implies in the various limiting cases. These are now merely 
summarised: 

intermediate regime, v >> 1 

small-angle regime, v << 1 
1 -:(?) 

S ( k )  = 

1 2 2  where U = ak I (NIN,) is the ratio of the mean square distance between cross-links to 
the square of the scattering ‘wavelength’ (A - 2n/k).  

The other limit of interest is that of the tightly cross-linked network (w large). In 
that case, returning to (13) we can neglect the expoqential term in the non-affine 
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fluctuations, that is if 

1 2 w / 3 - 1  or 2 N J N - 1 .  

This means that every few monomers there is a cross-link. Obviously this will severely 
reduce the fluctuations away from the mean (affine) position and (13) becomes: 

= T(e - '  - 1 + y )  exp[- y ( 1 -  A j ? ) ]  (15) - 1 
N 2  P.4 2wi 

(where y = A?k?lL,/6) and where we consider labelled chains of average length L, 
between cross-link points. 

The first factor is the Debye term for scattering from a chain which has been 
deformed in a purely affine manner (it is the result of Benoit et a1 1975). The second 
term represents the non-affine part: 

exP[Y(A - 111. ( 1  6) 

For such a rubber A - 1 since large deformations of such a tightly cross-linked system 
are hardly possible. To observe the rather small effects implied by (16) A will have to 
be as large as possible and k as large as possible, that is in the intermediate regime 
where 

S(k)=-( 2 exp[y(A2-1)] 
Y Y  

3. Summary 

We have presented the scattering cross sections for both lightly and heavily cross- 
linked networks. It is suggested that entanglement effects should be minimised by 
cross-linking in fairly dilute solution. This would maximise the effects of fluctuations 
and mostly nearly approach our phantom chain model for which the only constraining 
influence on the fluctuations is that of the cross-links. 

It is found for such a system that the non-affine fluctuations of the chains give a 
considerable contribution to the scattering. The limit of weak cross-linking is the 
same as that calculated by Pearson using Flory's model of fluctuating networks. 
However, the limit of dense cross-linking is different, and it is apparent from the 
general form (13 )  that the full result requires some investigation of the localising effect 
of links. In the Flory theory the restricting effect of the links appears only from the 
finite length of the segments, L,. Taking the Deam and Edwards view that the 
localising effect is much more serious and should be determined in some variational 
way gives a lower estimate for the free energy. Likewise here the averaging over the 
constraint gives the extra factor in S ( k ) .  
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